Thermal Conductivity of Ingot Niobium – Estimating with Processing History

S.K. Chandrasekaran¹, T.R. Bieler², C.C. Compton³, W. Hartung³ and N.T. Wright¹

¹Department of Mechanical Engineering Michigan State University

²Department of Chemical Engineering and Materials Science Michigan State University

> ³National Superconducting Cyclotron Laboratory Michigan State University

1st International Symposium on Superconducting Science and Technology of Ingot Niobium

Thermal Conductivity of Superconducting Nb

Conduction in Nb at 2 – 4.2 K is a function of

o purity

- imperfection density
- grain size
- grain orientation?

- Need to relate thermal conductivity k with
 - metallurgy
 - processing history
- Doing so,
 - Allows prediction of k in final cavity
 - k can be used as a diagnostic tool

Measurement Apparatus

- Steady state temperature profile measured
- Apparatus can accommodate 4 samples
- Ge and C resistors used to measure temperature
- 3 4 sensors on each sample
- Apparatus tested in LHe Dewar at 1.5 – 1.9 K

Temperature data

- Points represent thermistor temperature measurements
- Dotted lines assume uniform conductivity between the sensors
- Thermal conductivity estimated by $k = -\frac{q''}{dT/dx}$

$$k(T) = R(y) \left[\frac{\rho_{295}}{LRRRT} + aT^2 \right]^{-1} + \left[\frac{1}{De^{-y}T^2} + \frac{1}{B\lambda T^3} \right]^{-1}$$

- ρ_{295} electrical resistivity at 295 K
- L Lorentz constant
- RRR ratio of electrical resistivity at 295 K to that at 4 K
- *a* coefficient of momentum exchange within lattice
- D quantifies phonon scattering by electrons
- *B* value from Casimir for scattering at crystal boundaries
- λ phonon wavelength
- $\mathbf{y} \approx \alpha T_c/T$

Ref.: F. Koechlin and B. Bonin, Supercond. Sci. Technol. 9 (1996)

・ 同 ト ・ ヨ ト ・ ヨ ト

SSTIN 7/17

Parameters to be estimated

$$\mathbf{y} pprox lpha rac{T_c}{T}$$
 \Downarrow
 $\mathbf{y} pprox eta_5 rac{T_c}{T}$

<ロト < 回 > < 回 > < 回 > < 回</p>

Scaled Sensitivity Coefficients

Sensitivity coef.:

$$\gamma_i = \beta_i \frac{\partial T}{\partial \beta_i}$$

•
$$\beta_1 = \frac{p_{295}}{LRRF}$$

• $\beta_2 = a$
• $\beta_3 = \frac{1}{D}$
• $\beta_4 = \frac{1}{B\lambda}$
• $\beta_5 = \alpha$

Specimens Analyzed

- Parameters estimated from
 - 15 ingot specimens with 70 \leq RRR \leq 450
 - As rec'd condition
 - 2 specimens heat treated at 600 °C, 6 hrs
 - 4 specimens heat treated at 750 °C, 2 hrs
 - 2 specimens heat treated at 800 °C, 2 hrs
- Not presented here
 - 2 specimens heat treated at 140 °C, 48 hrs
 - 2 specimens from zone melted tube

Example: Sample A

β_1 and RRR

- β_1 floats from initial guess
- Estimated relationship gives confidence in reduction

β_4 and Heat Treatments

Chandrasekaran et al. (Michigan State Univ.)

Conductivity of Nb

SSTIN 13/17

β_4 and Heat Treatments

- Lower β_4 with increasing heat treatment temperature
- As rec'd specimens exhibit greater thermal resistance

- *k* of superconducting Nb is a function of material processing
- Koechlin and Bonin good starting point but more needed
- New parameter estimation technique skips intermediate step
- β_1 RRR relation gives confidence
- Data shows strong relationship between β_4 and heat treatments
- Greater β₄ values for as rec'd Residual stresses from ingot production?

• Refine specimen characterizations

- grain orientations
- mis-orientation map and angle
- Other heat treatment protocols are being characterized
 - 140 °C, 48 hrs
 - 600 °C, 10 hrs
- More data at high temperature
 - Capture the kinetics of heat treatment
- Correlation with mechanical properties sought

Acknowledgements

Ingot Nb discs

• Dr. G.R. Myneni, Jefferson Laboratory

Funding

- U.S. Department of Energy
- Fermi National Accelerator Laboratory
- National Superconducting Cyclotron Laboratory

Collaborators

- Di Kang, Michigan State University
- Lindsay Dubbs and Kyle Elliott, NSCL

Travel Support

• Dr. G.R. Myneni and ISOHIM